Thermal poling behavior and SHG stability in arsenic-germanium sulfide glasses
نویسندگان
چکیده
Second-order optical properties of thermally poled arsenicgermanium sulfide glasses have been investigated. Parallel studies of glass structure changes upon poling and/or visible cw-laser irradiation and complete SHG quantitative analysis have been performed. Key parameters and poling mechanisms influencing largely SHG stability and efficiency have been pointed out. ©2013 Optical Society of America OCIS codes: (160.2750) Glass and other amorphous materials; (190.4400) Nonlinear optics, materials; (160.4330) Nonlinear optical materials. References and links 1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011). 2. Y. Sasaki and Y. Ohmori, “Phase-matched sum-frequency light generation in optical fibers,” Appl. Phys. Lett. 39(6), 466–468 (1981). 3. U. Österberg and W. Margulis, “Experimental studies on efficient frequency doubling in glass optical fibers,” Opt. Lett. 12(1), 57–59 (1987). 4. M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, and G. Martinelli, “High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling,” Opt. Express 14(4), 1524–1532 (2006). 5. M. Dussauze, X. L. Zheng, V. Rodriguez, E. Fargin, T. Cardinal, and F. Smektala, “Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses,” Opt. Mater. Express 2(1), 45–54 (2012). 6. H. Guo, X. Zheng, M. Lu, K. Zou, B. Peng, S. Gu, H. Liu, and X. Zhao, “Large second-order nonlinearity in thermally poled Ge-Sb-Cd-S chalcogenide glass,” Opt. Mater. 31(6), 865–869 (2009). 7. M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754– 12759 (2010). 8. P. Thamboon and D. M. Krol, “Second-order optical nonlinearities in thermally poled phosphate glasses,” J. Appl. Phys. 93(1), 32–37 (2003). 9. R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16(22), 1732–1734 (1991). 10. M. Guignard, V. Nazabal, F. Smektala, J. L. Adam, O. Bohnke, C. Duverger, A. Moréac, H. Zeghlache, A. Kudlinski, G. Martinelli, and Y. Quiquempois, “Chalcogenide glasses based on germanium disulfide for second harmonic generation,” Adv. Funct. Mater. 17(16), 3284–3294 (2007). 11. M. Dussauze, T. Cremoux, F. Adamietz, V. Rodriguez, E. Fargin, G. Yang, and T. Cardinal, “Thermal poling of optical glasses: mechanisms and second-order optical properties,” Int. J. Appl. Glass Sci. 3(4), 309–320 (2012). 12. R. Jing, Y. Guang, Z. Huidan, C. Guorong, K. Tanaka, K. Fujita, S. Murai, and Y. Tsujiie, “Second-harmonic generation in thermally poled chalcohalide glass,” Opt. Lett. 31(23), 3492–3494 (2006). 13. N. Carlie, “A solution-based approach to the fabrication of novel chalcogenide glass materials and structures,” in Materials Science and Engineering (Clemson University, Clemson, SC, 2010), p. 163. 14. C. Lopez, “Evaluation of the photo-induced structural mechanisms in chalcogenide glass,” in College of Optics and Photonics (University of Central Florida, Orlando, FL, 2004). #185244 $15.00 USD Received 11 Feb 2013; revised 8 Apr 2013; accepted 9 Apr 2013; published 1 May 2013 (C) 2013 OSA 1 June 2013 | Vol. 3, No. 6 | DOI:10.1364/OME.3.000700 | OPTICAL MATERIALS EXPRESS 700 15. V. Rodriguez, “Quantitative determination of linear and second-harmonic generation optical effective responses of achiral or chiral materials in planar structures: theory and materials,” J. Chem. Phys. 128(6), 064707–064710 (2008). 16. C. Maurel, L. Petit, M. Dussauze, E. I. Kamitsos, M. Couzi, T. Cardinal, A. C. Miller, H. Jain, and K. Richardson, “Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system,” J. Solid State Chem. 181(10), 2869–2876 (2008). 17. A. T. Ward, “Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures,” J. Phys. Chem. 72(12), 4133–4139 (1968). 18. G. Lucovsky, “Optic modes in amorphous As2S3 and As2Se3,” Phys. Rev. B 6(4), 1480–1489 (1972). 19. G. Lucovsky and R. M. Martin, “A molecular model for the vibrational modes in chalcogenide glasses,” J. NonCryst. Solids 8–10, 185–190 (1972). 20. M. Muniz-Miranda, G. Sbrana, P. Bonazzi, S. Menchetti, and G. Pratesi, “Spectroscopic investigation and normal mode analysis of As4S4 polymorphs,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 52(11), 1391–1401 (1996). 21. K. Tanaka, “Photo-induced phenomena in chalcogenide glass: comparison with those in oxide glass and polymer,” J. Non-Cryst. Solids 352(23-25), 2580–2584 (2006). 22. L. Calvez, Z. Yang, and P. Lucas, “Composition dependence and reversibility of photoinduced refractive index changes in chalcogenide glass,” J. Phys. D Appl. Phys. 43(44), 445401 (2010). 23. H. Fritzsche, “The origin of reversible and irreversible photostructural changes in chalcogenide glasses,” Philos. Mag. B 68, 561–572 (1993). 24. D. L. Douglass, C. C. Shing, and G. Wang, “The light-induced alteration of realgar to pararealgar,” Am. Mineral. 77, 1266–1274 (1992). 25. K. Trentelman, L. Stodulski, and M. Pavlosky, “Characterization of pararealgar and other light-induced transformation products from realgar by Raman micro spectroscopy,” Anal. Chem. 68(10), 1755–1761 (1996). 26. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74(6), 3683–3687 (1993). 27. R. H. Stolen and H. W. K. Tom, “Self-organized phase-matched harmonic generation in optical fibers,” Opt. Lett. 12(8), 585–587 (1987). 28. T. G. Alley, S. R. J. Brueck, and M. Wiedenbeck, “Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica,” J. Appl. Phys. 86(12), 6634–6640 (1999). 29. T. G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. NonCryst. Solids 242(2-3), 165–176 (1998). 30. D. Faccio, V. Pruneri, and P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79(17), 2687–2689 (2001). 31. M. Dussauze, E. Fargin, M. Lahaye, V. Rodriguez, and F. Adamietz, “Large second-harmonic generation of thermally poled sodium borophosphate glasses,” Opt. Express 13(11), 4064–4069 (2005). 32. M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium−niobium borophosphate glasses,” J. Phys. Chem. C 111(39), 14560–14566 (2007). 33. K. Shimakawa, S. Inami, and S. R. Elliott, “Reversible photoinduced change of photoconductivity in amorphous chalcogenide films,” Phys. Rev. B Condens. Matter 42(18), 11857–11861 (1990).
منابع مشابه
Synthesis and Characterization of the Thiogermanic Acids H4Ge4S10 and H2Ge4S9
The synthesis and structure of the thiogermanic acids H4Ge4S10 and H2Ge4S9 are reported. A novel preparation method consisting of reacting germanium oxide with liquid hydrogen sulfide containing a trace amount of water is used to form Ge4S104ions. Evaporating the hydrogen sulfide solution at room temperature leaves an unstable H4Ge4S10·xH2O product. The stoichiometry and structure of the therma...
متن کاملNonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared
Group IV photonics hold great potential for nonlinear applications in the nearand mid-infrared (IR) wavelength ranges, exhibiting strong nonlinearities in bulk materials, high index contrast, CMOS compatibility, and cost-effectiveness. In this paper, we review our recent numerical work on various types of silicon and germanium waveguides for octave-spanning ultrafast nonlinear applications. We ...
متن کاملMicro-structuring the surface reactivity of a borosilicate glass via thermal poling
Thermal poling was proven successful to induce second order nonlinear properties and concurrent modification of composition, structure and chemical reactivity in glasses. With current efforts to reduce devices sizes in components employing such attributes, means to control changes at the micrometer scale are needed. We present a micro-imprinting poling process to locally tailor surface properti...
متن کاملتولید هماهنگ دوم در فیلمهای پلیمری DSR1-PMMA
The poling process of polymers doped with chromophores is of great importance for the nonlinear properties of these materials. So, after having optimized the poling condition the second harmonic generation (SHG) was measured for PMMA polymer doped with Disperse Red 1. The dependence of SHG intensity to the poling voltage and poling temperature have been experimentally studied. The relaxation ...
متن کاملDetermination of the activation energy of crystallization based up on Ozawa and Kissinger formalisms and thermal stability of V2O5-NiO- TeO2 glasses by differential scanning calorimetry (DSC)
In the present research work, (60-x)V2O5-xNiO-40TeO2 amorphous bulk compositions with different molar percentages of 0≤x≤20 mol%, were prepared by well-known rapid melt-quenching method. Differential scanning calorimetry (DSC) at different heating rates (φ) was used to thermal analyze and to obtain more insight in to the thermal stability, glass forming tendency and so calorimetric characteris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013